
External Bus Interface Documentation 1

03/11/99 4:53 PM

AUSTRALIA TELESCOPE
NATIONAL FACILITY

PC ISA BUS
EXTERNAL BUS INTERFACE

11-Mar-1999

General Description.

The AT correlator "External bus interface" is designed to interface to an 80x86 mother board's 8/16 bit
ISA bus.

The external bus provides addressing for 32K by 16-bit words of memory and six specific purpose 16-bit
registers. The external bus consists of a non-multiplexed, 50 pin header, containing...

o 16 data lines (D15..0)

o 15 address lines (A14..0)

o Write/Read control line (-WR)

o A command acknowledge line (-ACK)

o A general purpose strobe line (-STB)

o Six specific purpose strobe lines (-R5STB..-R0STB)

o Eight ground lines.

One "External bus interface" board may optimally interface upto three external buses (channels) at once
in one ISA slot. For proper software operation the hardware should be configured before use. This is
described in the section Hardware Configuration.

External Bus Interface Documentation 2

03/11/99 4:53 PM

Figure 1 shows a simplified board layout, showing the relative positions of the XILINX chips, the dip
switches and the links on the board.

Figure 1 - Simplified board layout, Component Side View.

ISA-XT (8 bits)ISA-AT (16 bits)
ISA bus connectors.

M
ou

tin
g

B
ra

ck
et

XC1 XC2 XC3

XC4
SW 1

SW 2

SW 3LK
4

LK6

LK
5

LK
3

LK
1

LK
2

SW5
SW4

External Bus 2External Bus 1External Bus 0

External Bus Interface Documentation 3

03/11/99 4:53 PM

Hardware Set-up

XILINX Configuration

There are two functions served by the Xilinx chips on the interface.

1. Device selection and contention resolution. This function is wholly carried out by XC4. Which is
normally an XC3020PC84-70. This chip must always be present, even if only one external
interface is to be used and no device contention is possible.

2. External bus interfacing. This function is provided by XC3, XC2 and XC1 independently of
each other. This device is normally an XC3064PC84-70. Each one of these chips handles all of
the interfacing with an external bus. They require XC4 for contention resolution and to provide
the XCn-ENABLE signal.

Table 1 - Possible Interface Configurations

The interface may be a Minimum, Partial or Maximum configuration as shown in Table 1.

The associated IC's required for each configuration are described in the Hardware Assembly section.

XILINX Configuration PROMS

Outline of XILINX configuration methods...

Using One PROM: The most efficient method of configuring the XILINX chips is to use one single
configuration PROM in socket U15. This would be an XC1765S or compatible ATT1765F serial
PROM. This would involve having XC4 in MASTER-SERIAL mode, and the rest in SLAVE-SERIAL
mode. XC4 would program itself first, then serially pass on data to the other chips, which would receive
the data simultaneously. This method would see XC4 configured first, however, it will not enter the
programmed state until the PROM has reached it's terminal count.

Using Two PROMs: A second method which is simpler to implement would be to use one PROM for
the address decoder chip XC4 in U15, and a second PROM for XC3, XC2, and XC1 in U18. The first
PROM would be an XC1736S (or compatible) with the XILINX chip XC4 in MASTER-SERIAL mode.
The second PROM would be an XC1765S (or compatible) with the XILINX chip XC3 in MASTER-
SERIAL mode, and the rest in SLAVE-SERIAL mode. In this case the two PROMS would operate
independently of each other. XC3 would also pass on the configuration data to XC2 and XC1 as it
simultaneously configured itself. This method would see all four chips configured at start-up.

Using Four PROMs: An alternate method which is less efficient would be to use an individual PROM
for each XILINX chip. This would involve using an XC1736S (or compatible) in U15 and a XC1765S
(or compatible) in each of U18, U19 and U20 for each of XC3, XC2 and XC1 respectively. Each
XILINX chip would be in MASTER-SERIAL mode and would configure independently of each other
upon start-up.

Method 1: using only one PROM...

This method as outlined above is the most efficient method, as it only uses one configuration prom in
U15 to configure all 4 XILINX chips. The PROM used would have to be an XC1765S or compatible.
One limitation of this method, is that XC3, XC2 and XC1 must have the same configuration file.

Configuration XC4 XC3 XC2 XC1

Minimum 4 4 7 7

Partial 4 4 4 7

Maximum 4 4 4 4

External Bus Interface Documentation 4

03/11/99 4:53 PM

Programming the PROM would involve using the PROM utility in the Xact Design Environment. The
PROM file for XC4 would be loaded at address 0x0000 in the UP direction. Then the PROM file for
XC3, which will also be used to load XC2 and XC1, would then be loaded after the first file, also in the
UP direction. The file can now be saved, and the PROM programmed.

As described in the outline above, XC4 must be in MASTER-SERIAL mode and the other chips in
SLAVE-SERIAL mode. This involves placing three jumpers in link LK5. No jumpers are required in
LK6 as XC3, XC2 and XC1 default to SLAVE-SERIAL mode.

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

Vcc

XC2

Slave-Serial Mode

U19

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

Vcc

XC3

Slave-Serial Mode

U18

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC4

Master-Serial Mode

U15

Dout

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

Vcc

XC1

Slave-Serial Mode

U20

Figure 1 - Shows simplified signal flow from PROM to XILINX chips.

Jumpers need to be installed in link LK4 to patch the clock and data from XC4. Linking all the jumpers
will provide the hookup required for this configuration.

External Bus Interface Documentation 5

03/11/99 4:53 PM

Method 2: using two PROMs...

This method as outlined above is much simpler to implement, as the PROM's only contain one
configuration each, they are easier to compile. A PROM would be used in U15 to configure XC4, this
would be an XC1736S (or compatible). A separate PROM would be used in U18 to configure XC3, XC2
and XC1 simultaneously. This would be an XC1765S (or compatible). One limitation of this method is
that XC3, XC2 and XC1 must have the same configuration file.

Programming the PROMs would involve using the PROM utility in the Xact Design Environment. The
PROM file for XC4 would be loaded at address 0x0000 in the UP direction and saved. This would be
repeated for XC3 on a new PROM file. The files can now be used to programme each PROM.

As described in the outline above, XC4 and XC3 must be in MASTER-SERIAL mode and the rest in
SLAVE-SERIAL mode. This involves placing three jumpers in link LK5 for XC4. One jumper would
be required in LK6 - position 3, to switch XC3 into MASTER-SERIAL mode. No jumpers are required
for XC2 and XC1 as they default to SLAVE-SERIAL mode.

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

Vcc

XC2

Slave-Serial Mode

U19

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC3

Master-Serial Mode

U18

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC4

Master-Serial Mode

U15

Dout

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

Vcc

XC1

Slave-Serial Mode

U20

Figure 2 - Shows simplified signal flow from PROMs to XILINX chips.

Jumpers need to be installed in LK4 to patch the clock and data from XC3. Linking the jumpers at
positions 1, 2, 4 and 5 will do this. Links at positions 3 and 6 are left out, as they tie in XC4, which is to
be isolated for this configuration.

Method 3 - using 4 PROMs...

This method as outlined above is the most versatile. It uses one PROM for each XILINX chip. This
allows every chip to have it's own independent configuration. Unfortunately, this requires the use of four
PROMS. The PROM for XC4 would be placed in U15 and would be an XC1736S (or compatible). The
PROMs for XC3, XC2 and XC1 would be XC1765S (or compatibles).

Programming the PROMs would involve using the PROM utility in the Xact Design Environment. The
PROM files need to be loaded starting at address 0x0000 going UP, and saved. This would be done for
all of the PROMs separately. The files are now ready to be programmed into the PROMs.

As described in the outline above, all of the XILINX chips must be in MASTER-SERIAL mode. This
involves placing three jumpers in link LK5 for XC4 and jumpers in all three positions of link LK6 for
XC3, XC2 and XC1.

External Bus Interface Documentation 6

03/11/99 4:53 PM

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC2

Master-Serial Mode

U19

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC3

Master-Serial Mode

U18

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC4

Master-Serial Mode

U15

Dout

Serial
Prom

Data
CClk

CClk
Din

M0
M1
M2

GND

XC1

Master-Serial Mode

U20

Figure 3 - Shows simplified signal flow from PROMs to XILINX chips.

Jumpers should not be placed in LK4 as each chip is required to configure itself independently.

Device Address Switches

The base addresses for each of the external buses must be selected by setting the 10-way DIP switches
near XC4. These switches represent the ISA address lines ISA-A14..5 inclusive. ISA-A15 is always
assumed to be "0" by the address decoder chip XC4. This effectively limits the possible addresses to the
lower 512KB of the ISA I/O space.

If two or more switches are set to the same address, the device contention logic in XC4 will ensure that
only one device will be selected, with priority given in the order XC3, XC2 and finally XC1.

It is advisable, that if more than one external bus is to be run from the same interface, that their relative
base addresses be 1KB apart in the I/O space. This is so that minimal I/O space will be used by the
interface. This maintains compatibility with any ISA-XT devices that only decode 10 address bits. See
references.

A suitable place in the ISA I/O space must be found with at least 32 bytes of I/O free on a 32 byte
boundary. This is in case any future changes to the interface will have full access to a 32 byte block
starting at the base address.

Interrupt Request Line

The interrupt request line must be installed using a jumper on the interface board. One single jumper
must be placed in the link LK3 marked IRQ. Choose the interrupt number required by the system, or by
the software. If no interrupt line is selected, no interrupts will reach the platform CPU regardless of the
software selection. If the incorrect interrupt line is selected the system may hang.

Note also that all three external buses on the interface share the same IRQ line. Hence the software must
poll all three devices to find out which one is interrupting.

DMA Request Line

The DMA request line must be installed by using a jumper on the interface board. One single jumper
must be placed in the link LK1 marked DMA REQ. Choose the DMA request line required by the
system, or by the software. This must be the same as the DMA acknowledge line. If no DMA request
line is selected, no DMA will be possible regardless of the software selection. If the incorrect DMA
request line is selected the system may hang.

Note that all three external buses on the interface share the same DMA REQ line. Hence the software
must be very careful only to enable one device for DMA at any one time.

External Bus Interface Documentation 7

03/11/99 4:53 PM

DMA Acknowledge Line

The DMA acknowledge line must be installed by using a jumper on the interface board. One single
jumper must be placed in the link LK2 marked DMA ACK. Choose the DMA acknowledge line
required by the system, or by the software. This must be the same as the DMA request line. If no DMA
acknowledge line is selected, no DMA will be possible regardless on the software selection. If the
incorrect DMA acknowledge line is selected the system may hang.

External Bus Interface Documentation 8

03/11/99 4:53 PM

Programming

Introduction

The "External bus interface" looks like three sets of registers in the ISA bus' I/O space.

Offset address Register Domain

0x14 MODE Local

0x10 STATUS Local

0x0E R5 External

0x0C R4 External

0x0A R3 External

0x08 R2 External

0x06 R1 External

0x04 R0 External

0x02 DATA External

0x00 ADDRESS Local - Special

Table 1. -Summary of registers and offset addresses.

Table 1 shows the registers available for each channel of the interface.

The offset address should be added to the base address, which is switch selectable on the board. Each
channel has it's independent base address.

The name of each register describes it's basic function, and the right column describes the Read and
Write capability and the domain of the register.

The registers marked external pass through the interface without modification. The local registers are
stored on the board and are not accessible through the external bus.

The register ADDRESS is an exception to the above paragraph. It is stored on the board, however, it is
sent to the external bus via the A14..0 dedicated address lines. This register also possesses other special
functions relating to DMA which are explained later.

Software Set-up

The options that may be controlled by software are...

o 8 or 16 bit ISA bus cycle instruction modes.

o The CPU interrupt mask.

o External bus timeout delay.

o DMA facilities.

The following local registers contain the configuration data for each external bus on the interface board.

External Bus Interface Documentation 9

03/11/99 4:53 PM

Mode Register

Software Delay Enable

DMA Enable

LSBMSB

SPARES

Bit 7

Read and Write

Soft Ext Bus Timeout

Address Increment Enable

Bit 8

Figure 1 - Mode Register breakdown.

Soft Ext Bus Timeout, is the maximum time in BCLK's that the interface will wait for an -ACK signal
from the Block before aborting a transfer. This delay is valid for all cycles that are external to the
interface. The default value in this register is zero, however, the software delay must be enabled by
using the Software Delay Enable bit in the register. The hardware default for the timeout delay is 15
BCLK's. The maximum achievable delay is 2048 BCLK's, which is the recommended maximum to
operate safely without memory brown-outs occurring.

Software Delay Enable activates the Soft External Bus Timeout Delay when set to "1". The default
state is "0", which allows the hardware default to become effective upon start-up.

Address Increment Enable sets up an increment on the ADDRESS register after every cycle (Read or
Write) to the external bus. The default state is "0", which disables this function.

DMA Enable instructs the interface to proceed with a DMA access cycle. It will assert the DMA-REQ
line for the interface board until the appropriate DMA-ACK signal is received from the ISA bus. The
DMA-REQ and DMA-ACK signals must be configured on the interface hardware using jumpers,
consult the Hardware Set-up section. The direction of the transfer is set up by the DMA controller chip
on the ISA platform through software. The DMA process may be configured to access the same external
address or an incrementing external address through the use of the Address Increment Enable bit. The
default state for DMA Enable is "0", which disables DMA upon start-up.

External Bus Interface Documentation 10

03/11/99 4:53 PM

LSBMSB

SPARES

Bit 7

Master Interrupt Enable
DMA Interrupt Enable

DMA Interrupt
External Bus Timeout
Interrupt

SPARES

Read Only Read and Write

External Bus Timeout
Interrupt Enable

Figure 2 - Status Register breakdown.

The Status Register consists of two parts, as can be seen in Figure 2. The MSB half is a read only byte
which contains interrupt information for the CPU. Attempting to write to this byte will only reset its
contents. The LSB half is a read and write byte, which contains an interrupt mask. This allows the
software to enable/disable specific interrupts, or all at once; using the Master Interrupt Enable bit.

Master Interrupt Enable bit is one bit that enables/disables all other interrupts. This may be done
quickly without changing the states of the other individual interrupts. The default state is "0", which
disables all interrupts. The specific hardware interrupt that is asserted is determined by the hardware.
See Hardware Set-up for more information. If more than one external bus is operating on one board,
they all share the same interrupt lines, hence the software must poll the upper byte of this register in
conjunction with the lower byte, to see which asserted the interrupt.

DMA Interrupt Enable is the mask bit for the DMA Interrupt for the CPU. This interrupt is asserted
when the TC signal is received from the platform CPU. It must be enabled in conjunction with the
"Master Interrupt Enable" bit, in order for the software to become aware that a DMA block has been
transferred. The default state is "0", which disables this interrupt.

External Bus Timeout Interrupt Enable is the mask bit for the CPU interrupt generated by a Timeout
occurring on the external bus. This may be due to either the software selected timeout, or the default
timeout. This interrupt indicates that a transfer cannot take place. This bit must be enabled in
conjunction with the "Master Interrupt Enable" bit, in order for the interrupt to be generated on the ISA
bus. The default state is "0", which disables this interrupt.

DMA Interrupt bit is asserted when the platform controller asserts the TC (Terminal Count) signal
after a DMA transfer involving the specific external bus. This is the only indication to the software that
a DMA block has been transferred. The actual hardware interrupt generated is determined by the
hardware configuration on the interface. See the Hardware Set-up section for more information. The
software must poll all the external buses connected to the interface and check both the interrupt mask
bits and the interrupt status bits to determine if an interrupt has occurred. All the interrupt bits will be
cleared after a read or write to the top half on the Status Register.

External Bus Interface Documentation 11

03/11/99 4:53 PM

External Bus Timeout Interrupt bit is asserted when a timeout has occurred while attempting to read
or write to the external bus. This is due to a failure to receive a -ACK signal from the block in good
time. The timeout time is determined by either the software delay or the default hardware delay,
depending which is enabled at the time. The actual hardware interrupt generated is determined by the
hardware configuration on the interface. See the Hardware Set-up section for more information. As with
all interrupts, the software must poll all the external buses connected to the interface and check both the
interrupt mask bits and the interrupt status bits to determine if an interrupt has occurred. All the
interrupt bits will be cleared after a read or write to the top half on the Status Register.

Address Register

LSBMSB Bit 7

Read and Write

Unused
External Bus Address

Figure 3 - Address Register breakdown.

The Address Register always contains the current address being sent out on the address lines A14..0 on
the external bus. It may be read or written to at any time, except during a DMA transfer cycle. During a
DMA transfer the "Automatic Address Increment Enable" bit in the Mode register will cause the
ADDRESS value in this register to increment by two byte address values, ie: after each word is
transferred, the word address will increment by one. It may be checked after a DMA transfer to see how
many words were transferred. The default address value upon start-up of this register is "0x0000".

External Bus Interface Documentation 12

03/11/99 4:53 PM

Appendix A - External Bus Description

Signal Descriptions

A14..A0 Address lines.

D15..D0 Data lines.

-WR Write line. If high when -STB goes low indicates that transaction is a read. If low
when -STB goes low indicates that the transaction is a write.

-STB Strobe line. High to low edge indicates valid address on A15..A0 and valid -WR
line. For a data write, it also means that the data lines D15..D0 are also valid.

-ACK Acknowledge line, High to low transition from the slave means that it as finished
with the data placed on the bus by the host.

-RnSTB Register n strobe line. Same as for the -STB line, but indicates a transaction with
Register n. The address lines are undefined. The data and the -WR line have the
same meaning as for the -STB signal.

External Bus Protocol and Timing. Four types of transactions can be carried out on the
external bus, Addressed Read, Addressed Write, Register Read and Register Write. The addressed read
and write refer to reading and writing to an addressable location on the external bus using the ADR and
DATA register. Register reading and writing refers to reading and writing from one of the six registers
on the bus (R0..R5).

The timing diagram for Addressed Read and Addressed Write appear in Fig(2) and Fig(3)
respectively. On a read transaction, the external bus host (the QBUS interface board) places the address
on the address lines (A[14..0]) and sets -WR High. Some time later the host asserts -STB. This is used
to indicate that A[14..0] and -WR are valid. The slave must then place the required data on the data
lines (D[15..0]) and sets -ACK low some time later. In response to this the host deasserts -STB and the
slave must then deassert -ACK and tri-state it and the data lines.

When the host wishes to write to the bus, it sets up the data on D[15..0], address on A[14..0]
and sets -WR low and some time later asserts -STB to indicate that valid address and data are on the
bus. When the slave has finished with the data, it asserts -ACK low. The host then deasserts -STB.
The slave then deasserts -ACK.

Protocol for transactions dealing with the external bus registers is similar to those dealing with
the addressable locations on the bus, except that the address lines are no longer necessary, and assume
don't care states. Each of the four registers has its own strobe line on the external bus (-RnSTB, where
n=0..5). When the slave detects one of the -RnSTB lines active, it performs the read or write on that
register. (Note, the address bus will always reflect the contents of the address register. There is,
therefore, no reason why the address lines cannot be used in conjunction with a -RnSTB line for
additional functionality).

The timing values for the external bus are given in Table(2). There are maximum values on
the response times (-STB to -ACK) so that a timeout mechanism may be employed to detect nonexistent
and faulty memory and registers. Such a condition is detected on the QBus by a timeout on the register
access.

External Bus Interface Documentation 13

03/11/99 4:53 PM

Timing Diagrams

-(Rx)STRB

BCC IF Read Transaction

-WR

DATA

-ACK

tACsu

tSTRBho

tack

tDsu tBUS li

ADDR

tACh

(ACK Tristate)

(note 1) (note 2)

Fig(2): Read Transaction

-(Rx)STRB

BCC IF Write Transaction

-WR

DATA

-ACK

tADCsu

tSTRBho

tack tBUSli

ADDR

(ACK Tristate)

tADCh

(note 1) (note 2)

Fig(3): Write Transaction.

External Bus Interface Documentation 14

03/11/99 4:53 PM

Notes to figs 2 and 3:
1. The ACK line is pulled high by a 4K7 Ω(nom) resistor at the Interface card end The ACK driver

may remain tri-stated up until it needs to drive the line low.
2. The ACK line should be driven high before being tri-stated.

Quantity Min Max

tACsu Address/Control setup. 32nS

tADCsu Address/Data/Control setup. 32nS
tack ACK response. 0nS 2µS

tACh Address/Control hold. 32nS

tADCh Address/Data/Control hold. 32nS

tDsu Data setup. 32nS

tBUSli Bus linger before tri-state. 32nS

tSTRBho Strobe Hold after ACK. 0nS 2µS

Table(2): External Bus timing constraints.

External Bus Interface Documentation 15

03/11/99 4:53 PM

50 pin header

21

43

65

87

109

1211

1413

1615

1817

2019

2221

2423

2625

2827

3029

3231

3433

3635

3837

4039

4241

4443

4645

4847

5049

D0

D2

D4

D6

D8

D10

D12

D14

GND

GND

GND

GND

GND

GND

GND

GND

GND

GND

A13

A11

A9

A7

A5

A3

A1

D1

D3

D5

D7

D9

D11

D13

D15

-WR

-ACK

-R5STRB

-R4STRB

-R3STRB

-R2STRB

-R1STRB

-R0STRB

-STRB

A14

A12

A10

A8

A6

A4

A2

A0

Fig(6): External bus pinouts.

External Bus Interface Documentation 16

03/11/99 4:53 PM

Appendix B - ISA I/O space description

Hex Range Device

000-01F DMA controller 1, 8237A-5

020-03F Interrupt controller 1, 8259A, Master

040-05F Timer, 8254-2

060-06F 8042 (Keyboard controller)

070-07F Real time clock, NMI mask

080-09F DMA page register, 74LS612

0A0-0BF Interrupt controller 2, 8259A

0C0-0DF DMA controller 2, 8237A-5

0F0 Clear math coprocessor BUSY

0F1 Reset math coprocessor

0F8-0FF Math coprocessor

1F0-1F8 Fixed disk

200-207 Game I/O

278-27F Parallel printer port 2

2F8-2FF Serial port 2

300-31F Prototype card

360-36F Reserved

378-37F Parallel printer port 1

380-38F SDLC, Bisynchronous 2

3A0-3AF Bisynchronous 1

3B0-3BF Monochrome display & printer adapter

3C0-3CF Reserved

3D0-3DF Color/Graphics monitor adaptor

3F0-3F7 Diskette controller

3F8-3FF Serial port 1

External Bus Interface Documentation 17

03/11/99 4:53 PM

Appendix C - ISA Interrupt Allocations

Level Function

NMI Parity, watchdog timer, arbitration time-out, channel check

IRQ 0 Timer 0 Output

IRQ 1 Keyboard interrupt input

IRQ 2 Interrupt input second controller

IRQ 8 Real-time clock

IRQ 9 Redirct cascade

IRQ 10 Reserved

IRQ 11 Reserved

IRQ 12 Mouse

IRQ 13 Math coprocessor

IRQ 14 Fixed disk

IRQ 15 Reserved

IRQ 3 Serial alternate

IRQ 4 Serial primary

IRQ 5 Reserved

IRQ 6 Diskette

IRQ 7 Parallel port

NOTE: IRQ 8 through IRQ 15 are cascaded through IRQ 2

